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Target AMD stages:

ü We experimentally verified that the OCTA projections, which ophthalmologists usually
use for diagnosis, are easily affected by layer segmentation errors. Those errors degrade
the classification performance.

ü We propose to use 3D raw OCTA volume to avoid the impacts of those errors. To
achieve this, we modify a pretrained 2D network to perform volume classification. We also
adopt an additional projection supervision to facilitate training of shallow feature extractor.

ü Experimental results show that the proposed classifier can achieve the accuracy of more
than 80%, regardless of the presence of layer segmentation errors. These results prove
the effectiveness of our methods and suggest that OCTA is a promising modality to
distinguish various stages of AMD disease.
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• Left: Comparison between fundus and OCTA w.r.t. AMD stages. All AMD stages
exhibit drusens in fudus while OCTA displays pathological vessels in different retina
layers directly. It is still an ongoing challenge to tell active stage from remission.

• Top: Interrelationships among OCT and OCTA raw volume, B-scans, and OCTA
projection. OCT B-Scan layer segmentation influences OCTA projection generation.
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Experimental Results

Methods

Discussion:
• [30] vs Ours(2D): EfficientNet backbone and Imagenet pretrained model helps.
• Human vs Ours(2D): Proving the potential of OCTA as a diagnostic modality for AMD.
• Ours(2D) vs Ours(3D), Error-free vs Error-prone: Directly analyzing 3D raw data benefits
• 3D Conv vs Ours(3D): Well-designed 2D CNN is better than 3D when training data is limited.
• Ours(3D): Our proposed projection supervision is helpful.

Data Preparation:
• The dataset consists of 697 raw OCTA volumes with projections: active 182, remission 187, dry 188 and normal 140.
• Error-free subset only has samples with no layer segmentation errors; Error-prone subset contains numerous samples with errors.

Confusion Matrices:
• Human struggled to
distinguish remission
from active;

• Layer segmentation error degrades accuracy on Dry;
• Ours-3D performs well and resist layer segmentation error better.

* MM: Multimodal information (including OCT B-scan, OCT and OCTA projections), PT: Pretraining. PS: Projection Supervision. 

Results:

Confusion Matrices:
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(a) 2D OCTA projection input

(b) 3D OCTA volume input

(c) 3D OCTA volume input w/ projection supervision
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(a) 2D OCTA projection input

(b) 3D OCTA volume input

(c) 3D OCTA volume input w/ projection supervision
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(a) 2D OCTA Projection Input
Ø Classifier structure: One additional convolution layer to convert input channels; Adjusted the
output of the last FC to match the number of categories.

Ø Warmup strategy: first freeze all the blue layers and train only the red ones for 600 epochs;
Then finetune all the layers together for another 900 epochs with a smaller learning rate.

(b,c) 3D OCTA volume Input
Ø 2D convolutional backbone for
volume classification:

• Take one dimension of 3D as
channel dimension (y-axis > z-axis);

• Use additional convolutional blocks
to reduce channels.

Ø Projection supervision:
• Add another Unet decoder branch
onto the EfficientNet backbone to
generate OCTA projections from
3D OCTA volume;

• Preserve the information necessary
for displaying vessel patterns and
aiding in AMD grading.


